Contents:
Decimal.
Fraction a/b.
Product of numbers a*b.
Pi (π).
Euler's number e.
E is a letter meaning 10^{n}.
Square root Sqrt(x).
Root of any degree Root(n, x).
Exponentiation Pow(n, x).
Logarithm Log(n, x).
Natural logarithm Ln(n).
Common logarithm Lg(n).
Binary logarithm Lb(n).
Greatest common divisor Gcd(n, m).
Least common multiple Lcm(n, m).
Trigonometric functions.
Sine of an angle Sin(x).
Cosine of an angle Cos(x).
Tangent of an angle Tan(x).
Cotangent of an angle Cot(x).
Secant of an angle Sec(x).
Cosecant of an angle Csc(x).
Inverse trigonometric functions.
Arcsine Asin(x).
Arccosine Acos(x).
Arctangent Atan(x).
Arccotangent Acot(x).
Arcsecant Asec(x).
Arcsecant Acsc(x).
Expressions containing multiple embedding of functions and mathematical operations.
Decimal
Notation:
Use a point or a comma to write a fraction
Examples:
1.12 or 1,12
Fraction a/b
Notation:
To enter fractions, use the sign «/»
Examples:
1/2 or 3/4
Product of numbers
Notation:
To write the product of two numbers, use the sign «*»
Examples:
5*4
Pi (π)
Notation:
To write the number π, enter «π», or «pi».
Examples:
Sin(π)
Euler's number e
e = 2.7182818284...
Notation:
To write the number e enter e or E.
Examples:
Cos(e)
E is a letter meaning 10^{n}
Notation:
The letter E should only be in the number
Examples:
16e+6
16e-4
3.96e+3
Square root Sqrt(x)
Notation:
Sqrt(x), where
x – any non-negative number or expression.
Examples:
Sqrt(3)
Sqrt(3/5)
Sqrt(3*3)
Root of any degree Root(n, x)
Notation:
Root(n, x), where
n – redicand
x – index
x, n – any numbers or expressions.
For an even root, the redicand cannot be negative.
Examples:
Cubic root of fraction 2/5
Root(2/5, 3)
Other examples
Root(1.5, 3)
Root((3*5), 3/2)
Root(1.5, 3/7)
Exponentiation Pow(n, x)
Notation:
Pow(n, x), where
n – base
x – exponent or power
x, n – any numbers or expressions.
Examples:
Five to the power of three
Pow(5, 3)
Other examples
Pow(12.5, 3)
Pow((3-5), 3/2)
Pow(1.5, Sqrt(2))
Logarithm Log(n, x)
Notation:
Log(n, x), where
n – the number whose logarithm you want to find
x – base.
x > 0, x ≠ 1, n > 0
Examples:
Log5 34 (logarithm of 34 to base 5), should be written as
Log(34, 5)
Natural logarithm Ln(n)
The base is equal to Euler's number e
(e = 2.7182818284...)
Notation:
Ln(n), where
n > 0<
Examples:
Ln(7)
Common logarithm Lg(n)
The logarithm base 10
Notation:
Lg(n), where
n > 0
Examples:
Lg(1.6)
Binary logarithm Lb(n)
The logarithm base 2
Notation:
Lb(n), where
n > 0
Examples:
Lb(3/6)
Greatest common divisor Gcd(n, m)
Notation:
Gcd(n, m), where
n, m – non-negative integers
Examples:
Gcd(12; 16) should be written as
Gcd(12, 16)
Least common multiple Lcm(n, m)
Notation:
Lcm(n, m), where
n, m – non-negative integers
Examples:
Lcm(4; 23) should be written as
Lcm (4, 23)
Trigonometric functions
All trigonometric functions take one or two arguments. If the function takes one argument, then the number is considered to be in radians.
Sine of an angle Sin(x)
Notation:
Sin(x)
Sin(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Sine π/3 radians
Sin(π/3) or Sin(π/3, Rad)
Sine 60° degrees
Sin(60, Deg)
Cosine of an angle Cos(x)
Notation:
Cos(x)
Cos(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Cosine π/3 radians
Cos(π/3) or Cos(π/3, Rad)
Cosine 60° degrees
Cos(60, Deg)
Tangent of an angle Tan(x)
Notation:
Tan(x)
Tan(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Tangent π/3 radians
Tan(π/3) or Tan(π/3, Rad)
Tangent 60° degrees
Tan(60, Deg)
Cotangent of an angle Cot(x)
Notation:
Cot(x)
Cot(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Cotangent π/3 radians
Cot(π/3) or Cot(π/3, Rad)
Cotangent 60° degrees
Cot(60, Deg)
Secant of an angle Sec(x)
Notation:
Sec(x)
Sec(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Secant π/3 radians
Sec(π/3) or Sec(π/3, Rad)
Secant 60° degrees
Sec(60, Deg)
Cosecant of an angle Csc(x)
Notation:
Csc(x)
Csc(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Cosecant π/3 radians
Csc(π/3) or Csc(π/3, Rad)
Cosecant 60° degrees
Csc(60, Deg)
Inverse trigonometric functions
All inverse trigonometric functions take one or two arguments. If the function takes one argument, then the function will return the solution in radians.
Arcsine Asin(x)
Notation:
Asin(x)
Asin(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Arcsine 1/3 (get the solution in radians)
Asin(1/3) or Asin(1/3, Rad)
Arcsine 1/3 (get the solution in degrees)
Asin(1/3, Deg)
Arccosine Acos(x)
Notation:
Acos(x)
Acos(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Arccosine 1/3 (get the solution in radians)
Acos(1/3) or Acos(1/3, Rad)
Arccosine 1/3 (get the solution in degrees)
Acos(1/3, Deg)
Arctangent Atan(x)
Notation:
Atan(x)
Atan(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Arctangent 1/3 (get the solution in radians)
Atan(1/3) or Atan(1/3, Rad)
Arctangent 1/3 (get the solution in degrees)
Atan(1/3, Deg)
Arccotangent Acot(x)
Notation:
Acot(x)
Acot(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Arccotangent 1/3 (get the solution in radians)
Acot(1/3) or Acot(1/3, Rad)
Arccotangent 1/3 (get the solution in degrees)
Acot(1/3, Deg)
Arcsecant Asec(x)
Notation:
Asec(x)
Asec(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Arcsecant 1/3 (get the solution in radians)
Asec(1/3) or Asec(1/3, Rad)
Arcsecant 1/3 (get the solution in degrees)
Asec(1/3, Deg)
Arcsecant Acsc(x)
Notation:
Acsc(x)
Acsc(x, measure)
Where
x – number
measure – can take values Rad or Deg
Examples:
Arcsecant 1/3 (get the solution in radians)
Acsc(1/3) or Acsc(1/3, Rad)
Arcsecant 1/3 (get the solution in degrees)
Acsc(1/3, Deg)
Expressions containing multiple embedding of functions and mathematical operations
Any expression can contain other expressions, the limit on the length of an expression is 100 characters.
Examples:
Root(Pow(3, 6), 2);
(5/2-4)*34/5-(Root(3, 2))
(12-123+5)/(12.45*(34/6))
Sin(60, Deg)+Cos(45, Deg)
etc.