Notice

We and selected partners use cookies or similar technologies as specified in the cookie policy.
You can consent to the use of such technologies by closing this notice, by scrolling this page, by interacting with any link or button outside of this notice or by continuing to browse otherwise.
To find out more about the categories of personal information collected and the purposes for which such information will be used, please refer to our privacy policy.

California Consumer Notice

0
AC +/- Γ·
7 8 9 Γ—
4 5 6 -
1 2 3 +
0 00 , =

Fractions Calculator With Step by Step Solution

The online fractions calculator can add fractions, subtract fractions, multiply fractions and divide any kind of fractions with the same or different denominators and get a complete step-by-step solution.


If the fraction does not have a whole-number part, leave this field blank. If the fraction is negative, put a minus in the whole part. The (+) button allows you to insert the previous result into a fraction and perform further calculations.

Adding fractions with the same denominator

Add two fractions with the same denominators.
4  +
34
6  =
34
4 + 6  =
34
10 =
34
5
17
β‰ˆ 0,2941

Step by step solution

Add the numerators of the fractions, and leave the denominator the same.
4  +
34
6  =
34
4 + 6  =
34
10
34
Simplify the fraction.
10
34

4  +
34
6  =
34
4 + 6  =
34
10 =
34
5
17

Adding fractions with different denominators

Add two fractions with different denominators
7  +
15
9  =
14
7 βˆ™ 14  +
210
9 βˆ™ 15  =
210
98  +
210
135  =
210
98 + 135  =
210
233 =
210
1 23
210
β‰ˆ 1,1095

Step by step solution

Let's make the denominator for
7  
15
and
9  
14
the same. In order for the fractions to have a common denominator, we calculate the least common multiple (LCM) of the denominators of the first and second fractions.

LCM( 15 ; 14 ) = 210

Divide the LCM 210 by the denominator of the first fraction and the denominator of the second fraction.
210 : 15 = 14
210 : 14 = 15

Now we write the LCM( 15 ; 14 ), into the denominator of each fraction, and multiply the numerator of each fraction by the result of dividing the LCM by the corresponding denominator.
7  +
15
9  =
14
7 βˆ™ 14  +
210
9 βˆ™ 15  =
210
98  +
210
135  
210
Add the numerators of the fractions, and leave the denominator the same.
7  +
15
9  =
14
7 βˆ™ 14  +
210
9 βˆ™ 15  =
210
98  +
210
135  =
210
98 + 135  =
210
233
210
Simplify the fraction.
233
210

7  +
15
9  =
14
7 βˆ™ 14  +
210
9 βˆ™ 15  =
210
98  +
210
135  =
210
98 + 135  =
210
233 =
210
1 23
210

Adding mixed fractions with different denominators

Add two mixed fractions with different denominators.
7 3  +
8
4 9  =
12
59  +
8
57  =
12
59 βˆ™ 3  +
24
57 βˆ™ 2  =
24
177  +
24
114  =
24
177 + 114  =
24
291 =
24
97 =
8
12 1
8
= 12,125

Step by step solution

Convert mixed fractions
7 3  
8
and
4 9  
12
into improper fractions. To do this, for each fraction, we will leave the denominator the same, and write the sum in the numerator, where the first term is the product of the denominator and the whole-number part, and the second is the numerator.

7 3  +
8
4 9  =
12
(8βˆ™7) + 3  +
8
(12βˆ™4) + 9  =
12
59  +
8
57  
12
Let's make the denominator for
59  
8
and
57  
12
the same. In order for the fractions to have a common denominator, we calculate the least common multiple (LCM) of the denominators of the first and second fractions.

LCM( 8 ; 12 ) = 24

Divide the LCM 24 by the denominator of the first fraction and the denominator of the second fraction.
24 : 8 = 3
24 : 12 = 2

Now we write the LCM( 8 ; 12 ), into the denominator of each fraction, and multiply the numerator of each fraction by the result of dividing the LCM by the corresponding denominator.
7 3  +
8
4 9  =
12
59  +
8
57  =
12
59 βˆ™ 3  +
24
57 βˆ™ 2  =
24
177  +
24
114  
24
Add the numerators of the fractions, and leave the denominator the same.
7 3  +
8
4 9  =
12
59  +
8
57  =
12
59 βˆ™ 3  +
24
57 βˆ™ 2  =
24
177  +
24
114  =
24
177 + 114  =
24
291
24
Simplify the fraction.
291
24

7 3  +
8
4 9  =
12
59  +
8
57  =
12
59 βˆ™ 3  +
24
57 βˆ™ 2  =
24
177  +
24
114  =
24
177 + 114  =
24
291 =
24
97 =
8
12 1
8

Subtracting fractions with the same denominator

Subtract two fractions with the same denominator.
6  -
8
2  =
8
6 - 2  =
8
4 =
8
1
2
= 0,5

Step by step solution

Subtract the numerator of the second fraction from the numerator of the first fraction, and leave the denominator the same.
6  -
8
2  =
8
6 - 2  =
8
4
8
Simplify the fraction.
4
8

6  -
8
2  =
8
6 - 2  =
8
4 =
8
1
2

Subtracting fractions with different denominators

Subtract two fractions with different denominators.
5  -
12
3  =
9
5 βˆ™ 3  -
36
3 βˆ™ 4  =
36
15  -
36
12  =
36
15 - 12  =
36
3 =
36
1
12
β‰ˆ 0,0833

Step by step solution

Let's make the denominator for
5  
12
and
3  
9
the same. In order for the fractions to have a common denominator, we calculate the least common multiple (LCM) of the denominators of the first and second fractions.

LCM( 12 ; 9 ) = 36

Divide the LCM 36 by the denominator of the first fraction and the denominator of the second fraction.
36 : 12 = 3
36 : 9 = 4

Now we write the LCM( 12 ; 9 ), into the denominator of each fraction, and multiply the numerator of each fraction by the result of dividing the LCM by the corresponding denominator.
5  -
12
3  =
9
5 βˆ™ 3  -
36
3 βˆ™ 4  =
36
15  -
36
12  
36
Subtract the numerator of the second fraction from the numerator of the first fraction, and leave the denominator the same.
5  -
12
3  =
9
5 βˆ™ 3  -
36
3 βˆ™ 4  =
36
15  -
36
12  =
36
15 - 12  =
36
3
36
Simplify the fraction.
3
36

5  -
12
3  =
9
5 βˆ™ 3  -
36
3 βˆ™ 4  =
36
15  -
36
12  =
36
15 - 12  =
36
3 =
36
1
12

Subtracting mixed fractions with different denominators

Subtract two mixed fractions with different denominators.
7 3  -
17
3 6  =
19
122  -
17
63  =
19
122 βˆ™ 19  -
323
63 βˆ™ 17  =
323
2318  -
323
1071  =
323
2318 - 1071  =
323
1247 =
323
3 278
323
β‰ˆ 3,8607

Step by step solution

Convert mixed fractions
7 3  
17
and
3 6  
19
into improper fractions. To do this, for each fraction, we will leave the denominator the same, and write the sum in the numerator, where the first term is the product of the denominator and the whole-number part, and the second is the numerator.

7 3  -
17
3 6  =
19
(17βˆ™7) + 3  -
17
(19βˆ™3) + 6  =
19
122  -
17
63  
19
Let's make the denominator for
122  
17
and
63  
19
the same. In order for the fractions to have a common denominator, we calculate the least common multiple (LCM) of the denominators of the first and second fractions.

LCM( 17 ; 19 ) = 323

Divide the LCM 323 by the denominator of the first fraction and the denominator of the second fraction.
323 : 17 = 19
323 : 19 = 17

Now we write the LCM( 17 ; 19 ), into the denominator of each fraction, and multiply the numerator of each fraction by the result of dividing the LCM by the corresponding denominator.
7 3  -
17
3 6  =
19
122  -
17
63  =
19
122 βˆ™ 19  -
323
63 βˆ™ 17  =
323
2318  -
323
1071  
323
Subtract the numerator of the second fraction from the numerator of the first fraction, and leave the denominator the same.
7 3  -
17
3 6  =
19
122  -
17
63  =
19
122 βˆ™ 19  -
323
63 βˆ™ 17  =
323
2318  -
323
1071  =
323
2318 - 1071  =
323
1247
323
Simplify the fraction.
1247
323

7 3  -
17
3 6  =
19
122  -
17
63  =
19
122 βˆ™ 19  -
323
63 βˆ™ 17  =
323
2318  -
323
1071  =
323
2318 - 1071  =
323
1247 =
323
3 278
323

Multiplication of fractions

Let's multiply two fractions.
6  β‹…
13
7  =
19
6 β‹… 7  =
13 β‹… 19
42
247
β‰ˆ 0,17

Step by step solution

Multiply the denominators and numerators of fractions.
6  β‹…
13
7  =
19
6 β‹… 7  =
13 β‹… 19
42
247

Multiplication of mixed fractions

Let's multiply two mixed fractions.
12 2  β‹…
15
5 9  =
23
182  β‹…
15
124  =
23
182 β‹… 124  =
15 β‹… 23
22568 =
345
65 143
345
β‰ˆ 65,4145

Step by step solution

Convert mixed fractions
12 2  
15
and
5 9  
23
into improper fractions. To do this, for each fraction, we will leave the denominator the same, and write the sum in the numerator, where the first term is the product of the denominator and the whole-number part, and the second is the numerator.

12 2  β‹…
15
5 9  =
23
(15 β‹… 12) + 2  β‹…
15
(23 β‹… 5) + 9  =
23
182  β‹…
15
124  
23

Multiply the denominators and numerators of fractions.
12 2  β‹…
15
5 9  =
23
182  β‹…
15
124  =
23
182 β‹… 124  =
15 β‹… 23
22568
345
Simplify the fraction.
22568
345

12 2  β‹…
15
5 9  =
23
182  β‹…
15
124  =
23
182 β‹… 124  =
15 β‹… 23
22568 =
345
65 143
345

Let's multiply two fractions.
9 45  β‹…
15
7  =
34
180  β‹…
15
7  =
34
180 β‹… 7  =
15 β‹… 34
1260 =
510
42 =
17
2 8
17
β‰ˆ 2,4706

Step by step solution

Convert mixed fraction
9 45  
15
into improper. To do this, leave the denominator the same, and write the sum in the numerator, where the first term is the product of the denominator and the whole-number part, and the second is the numerator.

9 45  β‹…
15
7  =
34
(15 β‹… 9) + 45  β‹…
15
7  =
34
180  β‹…
15
7  
34

Multiply the denominators and numerators of fractions.
9 45  β‹…
15
7  =
34
180  β‹…
15
7  =
34
180 β‹… 7  =
15 β‹… 34
1260
510
Simplify the fraction.
1260
510

9 45  β‹…
15
7  =
34
180  β‹…
15
7  =
34
180 β‹… 7  =
15 β‹… 34
1260 =
510
42 =
17
2 8
17

Division of fractions

Let's divide Fractions.
7  βˆΆ
9
14  =
8
7  β‹…
9
8  =
14
7 β‹… 8  =
9 β‹… 14
56 =
126
4
9
β‰ˆ 0,4444

Step by step solution

Let's swap the numerator and denominator of the second fraction.
7  βˆΆ
9
14  =
8
7  β‹…
9
8  
14
Multiply the denominators and numerators of fractions.
7  βˆΆ
9
14  =
8
7  β‹…
9
8  =
14
7 β‹… 8  =
9 β‹… 14
56
126
Simplify the fraction.
56
126

7  βˆΆ
9
14  =
8
7  β‹…
9
8  =
14
7 β‹… 8  =
9 β‹… 14
56 =
126
4
9

Division of mixed fractions

Let's divide one mixed fraction by another.
9 5  βˆΆ
7
3 31  =
5
68  βˆΆ
7
46  =
5
68  β‹…
7
5  =
46
68 β‹… 5  =
7 β‹… 46
340 =
322
170 =
161
1 9
161
β‰ˆ 1,0559

Step by step solution

Convert mixed fractions
9 5  
7
and
3 31  
5
into improper fractions. To do this, for each fraction, we will leave the denominator the same, and write the sum in the numerator, where the first term is the product of the denominator and the whole-number part, and the second is the numerator.

9 5  βˆΆ
7
3 31  =
5
(7 β‹… 9) + 5  βˆΆ
7
(5 β‹… 3) + 31  =
5
68  βˆΆ
7
46  
5

Let's swap the numerator and denominator of the second fraction.
9 5  βˆΆ
7
3 31  =
5
68  βˆΆ
7
46  =
5
68  β‹…
7
5  
46
Multiply the denominators and numerators of fractions.
9 5  βˆΆ
7
3 31  =
5
68  βˆΆ
7
46  =
5
68  β‹…
7
5  =
46
68 β‹… 5  =
7 β‹… 46
340
322
Simplify the fraction.
340
322

9 5  βˆΆ
7
3 31  =
5
68  βˆΆ
7
46  =
5
68  β‹…
7
5  =
46
68 β‹… 5  =
7 β‹… 46
340 =
322
170 =
161
1 9
161
Let's divide Fractions.
10 3  βˆΆ
14
7  =
9
143  βˆΆ
14
7  =
9
143  β‹…
14
9  =
7
143 β‹… 9  =
14 β‹… 7
1287 =
98
13 13
98
β‰ˆ 13,1327

Step by step solution

Convert mixed fraction
10 3  
14
into improper. To do this, leave the denominator the same, and write the sum in the numerator, where the first term is the product of the denominator and the whole-number part, and the second is the numerator.

10 3  βˆΆ
14
7  =
9
(14 β‹… 10) + 3  βˆΆ
14
7  =
9
143  βˆΆ
14
7  
9

Let's swap the numerator and denominator of the second fraction.
10 3  βˆΆ
14
7  =
9
143  βˆΆ
14
7  =
9
143  β‹…
14
9  
7
Multiply the denominators and numerators of fractions.
10 3  βˆΆ
14
7  =
9
143  βˆΆ
14
7  =
9
143  β‹…
14
9  =
7
143 β‹… 9  =
14 β‹… 7
1287
98
Simplify the fraction.
1287
98

10 3  βˆΆ
14
7  =
9
143  βˆΆ
14
7  =
9
143  β‹…
14
9  =
7
143 β‹… 9  =
14 β‹… 7
1287 =
98
13 13
98
You may also find the following calculators helpful
Fraction Calculators
Simplifying Fractions Calculator
Improper to Mixed Fraction Calculator
Mixed Fraction to Improper Calculator
Fractions Calculator With Step by Step Solution
Raising a Fraction to a Power. Online Calculator.
Decimal to Fraction Calculator
Fraction to Decimal Calculator
Compare Fractions Calculator
Common Denominator Calculator
Trigonometers Calculators
Sine Calculator
Cosine Calculator
Tangent Calculator
Cotangent Calculator
Secant Calculator
Cosecant Calculator
Arcsine Calculator
Arccosine Calculator
Arctangent Calculator
Arccotangent Calculator
Arcsecant Calculator
Arccosecant Calculator
Numeral Systems Calculators
Roman Numeral Calculator
Roman Numerals From 1 to 3999
Numeral Systems Calculator
Binary Calculator. Addition, Subtraction, Multiplication and Division of Binary Numbers.
Calculators (Number theory)
Mathematical Expressions Calculator
Calculator Parentheses
Prime Factorization Calculator
Gcd and Lcm Calculator With Steps
Gcd and Lcm calculator using Euclidean algorithm
Gcd and Lcm Calculator for Any Number of Numbers
Break Down the Number Into Its Place Value
Divide a Number by a Ratio. Online Calculator With Steps
Percentage Calculator With Steps
Scientific Notation to Decimal Conversion Calculator
Scientific Notation Converter
Factorial Calculator With Steps
Logarithm Calculator
Quadratic Equations Calculator With Steps
Remainder Calculator
Root Calculator
Decimal Period Calculator
Big Number Calculator
Rounding Numbers Calculator
Properties of Roots and Exponents Calculator
Complex Number Calculator
Area Calculators
Area of a Square Calculator
Area of a Rectangle Calculator
Combinatorics Calculators
Permutations of N Elements Calculator
Combinations of N Elements by M Calculator
Permutations of N Elements by M Calculator
Math Trainers
Addition Math Trainer
Subtraction Math Trainer
Multiplication Math Trainer
Division Math Trainer
Multiplication Table Math Trainer
Online Preschool Counting Trainer
Online Preschool Mindfulness Trainer
Online Addition Subtraction Multiplication Division Math Trainer. Find the Correct Answer.
Online Numeric Expression Trainer
Linear Algebra and Analytical Geometers Calculators
Matrix Addition and Subtraction Calculator
Matrix Multiplication Calculator
Matrix Transpose Calculator
Matrix Determinant Calculator
Inverse Matrix Calculator
Length of a Line Segment. Distance Between Points Online Calculator.
Vector Coordinates Calculator From Two Points
Vector Modulus (Length) Calculator
Vector Addition and Subtraction Calculator
Vector Dot Product Calculator. By Using the Length of the Vectors and Cosine of the Angle Between Vectors.
Vector Dot Product Calculator. By Using Vector Coordinates.
Vector Product Calculator. By Using Vector Coordinates.
Vector Triple Product Calculator
Vector Multiplication by Number Calculator
Angle Between Vectors Calculator
Vector Collinearity Check Calculator
Vector Coplanarity Calculator
Converters
Length Converter
Speed Converter
Acceleration Converter
Physics Calculators

Mechanics

Speed Time Distance Calculator
Acceleration Speed Distance Calculator
Displacement Time Calculator
Time Calculator
Newton's Second Law Calculator
Gravitational Force Calculator
Momentum Calculator
Impulse Calculator
Object Weight Calculator

Optics

Light Reflection and Refraction Calculator

Electricity and Magnetism

Ohm's Law Calculator
Coulomb's Law Calculator
Electric Field Strength Calculator
Point Electric Charge Calculator Q
Force Acting on Charge Calculator
Distance From Charge Calculator
Potential Charge Energy Calculator
Electric Field Potential Calculator
Conductor and Sphere Capacitance Calculator

Capacitors

Capacitance of Parallel Plate, Cylindrical and Spherical Capacitors Calculator
Electric Field Strength in Parallel Plate, Cylindrical and Spherical Capacitors Calculator
Voltage (Potential Difference) of Parallel Plate, Cylindrical and Spherical Capacitors Calculator
Distance Between Plates in Parallel Plate Capacitor Calculator
Plate Area in Parallel Plate Capacitor Calculator
Energy Stored in Charged Capacitor Calculator
Energy Stored in Parallel Plate, Cylindrical and Spherical Charged Capacitors Calculator
Volumetric Energy Density of Parallel Plate, Cylindrical and Spherical Capacitors Calculator
Astronomy Calculators
Object Weight on Other Planets
Gravitational Acceleration on the Planets of the Solar System and Their Satellites
Generators
Random Number Generator
Password Generator